

Development of Strategies to Increase Recycled Asphalt Pavement Mixtures in Oregon

Erdem Coleri, Ph.D.

Assistant Professor

Shashwath Sreedhar, Sogol Haddadi, Matthew Haynes, and Sunny Lewis

OUTLINE

- INTRODUCTION AND LITERATURE REVIEW
- EXPERIMENT TYPES AND OBJECTIVES
 - BINDER GRADE AND BINDER CONTENT
 - Blending evaluation
- IMPACT OF ROUGHNESS AND STRUCTURAL RESPONSE ON FUEL ECONOMY
- SUMMARY

Oregon State

INTRODUCTION AND LITERATURE REVIEW

Oregon Department of Transportation

An EPD (Environmental Product Declarations) is a third-party certified label that discloses the quantified environmental impacts of producing a product.

- Primary energy (MJ)
- Global warming potential
- Ozone depletion
- Acidification potential etc.

Sentmicy of Environmental Product Declaration		Environmental Impacts			•
Central Concrete Mix 340PG9Q1 San Jose Service Area EF V2 Gen Use P4000 3" Line 50% SCM		Impact name	Unit	Impact per m3	Impact per cyd
		Total primary energy consumption	MJ	2,491	1,906
		Concrete water use (batch)	m3	6.66E-2	5.10E-2
		Concrete water use (wash)	m3	8.56E-3	6.55E-3
		Global warming potential	kg CO2-eq	271	207
Performance Metrics		Ozone depletion	kg CFC-11-eq	5.40E-6	4.14E-6
		Acidification	kg S02-eq	2.26	1.73
28-day compressive strength	4,000 psi	Eutrophication	kg N-eq	1.31E-1	1.00E-1
Slump	4.0 in	PL sochemical ozone creation	kg 03-eq	46.6	35.7

National Asphalt Pavement Association (NAPA) EPD Program

http://www.asphaltpavement.org/EPD

A sample EPD for a concrete mix design by Central Concrete Supply Co. Credit: Central Concrete Supply

- Hansen and Copeland (2014)
 - In 2014, the use of RAP/RAS on U.S. roads displaced
 20M barrels of oil and 68M tons of aggregate
 - A savings of \$2.8B based on binder cost of \$550/ton and aggregate cost of \$9.50/ton
- NCAT Willis (2015)
 - Utilizing recycled asphalt results in a 9-26% energy savings and a 5-29% reduction in CO₂ emissions
 - A 19-42% energy savings and a 6-39% reduction in CO₂ emissions were realized when using RAP along with locally sourced materials

Currently 10 to 30% RAP is allowed. Higher RAP ~ Lower durability

HOW CAN WE INCREASE RAP CONTENT?

- Softer virgin binder grade (binder-grade bumping)
- Increased binder content
- Recycling agents
- Polymer and rubber modifiers
- Warm mix asphalt

OTHER BENEFITS OF INCREASED RAP?

For the limited budget scenario,
 More recycling = reduced construction cost

= paving more roadway sections every year

= increased road user comfort

= reduced road used costs

2 to 4% reduction in road user costs (NCHRP 720)

OUTLINE

- INTRODUCTION AND LITERATURE REVIEW
- EXPERIMENT TYPES AND OBJECTIVES
 - BINDER GRADE AND BINDER CONTENT
 - Blending evaluation
- IMPACT OF ROUGHNESS AND STRUCTURAL RESPONSE ON FUEL ECONOMY
- SUMMARY

OREGON STATE UNIVERSITY ASPHALT MATERIALS PERFORMANCE LABORATORY

OREGON STATE UNIVERSITY ASPHALT MATERIALS PERFORMANCE LABORATORY

EXPERIMENTS USED IN THIS STUDY BEAM FATIGUE TEST

EXPERIMENTS USED IN THIS STUDY Dynamic Modulus and Flow number tests

Dynamic modulus: Determine mix stiffness at different temperatures and load frequencies

Conduct flow number experiment at high temperatures to determine rutting resistance

OBJECTIVES RAP CONTENT, BINDER GRADE, AND BINDER CONTENT

- Identify the effects of binder-grade bumping and higher binder content on RAP/RAS performance
- Determine the impact of these alternatives on increasing RAP/RAS contents
- Evaluate the effect of blending on mixture performance
- Evaluate the cost and benefits of using binder-grade bumping and higher binder content to increase RAP/RAS.

INITIAL TEST RESULTS – SCB – FLEXIBILITY INDEX

BLENDING EVALUATION

Image: Zhao et al. (2016) Materials and Design

BLENDING EVALUATION

Binder extraction

Binder recovery

OUTLINE

- INTRODUCTION AND LITERATURE REVIEW
- EXPERIMENT TYPES AND OBJECTIVES
 - BINDER GRADE AND BINDER CONTENT
 - Blending evaluation
- IMPACT OF ROUGHNESS AND STRUCTURAL RESPONSE ON FUEL ECONOMY
- SUMMARY

IMPACT OF ROUGHNESS AND STRUCTURAL RESPONSE ON FUEL ECONOMY

Analyze how pavement structure affects vehicle fuel economy and GHG emissions through the pavement deflection and roughness.

- Phase I: Work with modelers from OSU, MIT, and MSU to obtain the modeling results.
- Phase II: Field experiments in California and verify the modeling results. Develop a database for fuel economy evaluation

□ Funded by Caltrans.

UC Davis Lead University John Harvey Lead PI

COLLEGE OF ENGINEERING

IMPACT OF ROUGHNESS AND STRUCTURAL RESPONSE ON FUEL ECONOMY

costs used are from World Bank HDM4

Road	Length (miles)	Traffic (AADT)	Percent trucks (%)	Roughness (in/mile)	Condition
1	1	12,000	25%	130	65
2	1	40,000	25%	100	78

Target IRI = 60 in/mile

Road 1: Annual user cost benefit = $(12,000 \times 0.25 \times 1 \times 365 \times 0.243) + (12,000 \times 0.75 \times 1 \times 365 \times 0.056)$ = 450,000\$/mile

Road 2: Annual user cost benefit = (40,000 x 0.25 x 1 x 365 x **0.138**) + (40,000 x 0.75 x 1 x 365 x **0.032**) = **854,000\$/mile**

LIFE CYCLE ASSESSMENT MORE FUEL EFFICIENT PAVEMENTS

SUMMARY

- Sample preparation and testing will be completed soon
- Performance modeling and cost analysis will follow
- Development of a decision making tool to quantify benefits of RAP – Pactrans research project

GO BEAVS!

Q&A Thank you!

colerie@oregonstate.edu

This study is sponsored by Oregon Department of Transportation (ODOT). This funding is gratefully acknowledged.